Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes.
نویسندگان
چکیده
OBJECTIVE To assess the relative importance of fasting and postprandial hyperglycemia to vascular dysfunction in diabetes, we have measured indicators of glycation, oxidative and nitrosative stress in subjects with type 1 diabetes, and different postprandial glucose patterns. RESEARCH DESIGN AND METHODS Plasma and urinary levels of specific arginine- and lysine-derived advanced glycation end products, as well as oxidative and nitrosative products, were measured by liquid chromatography with triple quadrupole mass spectrometric detection (LC-MS/MS) after 2 months of treatment with insulin lispro or human regular insulin in 21 subjects participating in a cross-over study. Hb-bound early glycation (Amadori) products were also measured after each treatment period by high-performance liquid chromatography (fructosyl-valine Hb or HbA1c [A1C]:Diamat) and fructosyl-lysine Hb by LC-MS/MS (A1C:fructosyl-lysine). RESULTS In diabetic patients, the concentrations of protein glycation and oxidation-free adducts increased up to 10-fold, while urinary excretion increased up to 15-fold. Decreasing postprandial hyperglycemia with lispro gave 10-20% decreases of the major free glycation adducts, hydroimidazolones derived from methylglyoxal and 3-deoxyglucosone, and glyoxal-derived Nepsilon-carboxymethyl-lysine. No differences were observed in A1C:Diamat or A1C:fructosyl-lysine with lispro or regular insulin therapy in spite of significant decreases in postprandial glycemia with lispro. CONCLUSIONS We conclude that the profound increases in proteolytic products of proteins modified by advanced glycation endproducts in diabetic patients are responsive to changes in mean hyperglycemia and also show responses to changes in postprandial hyperglycemia.
منابع مشابه
اثر یک ماه تیمار با سیستئین بر وضعیت قند و لیپید، همچنین گلیکه و اکسید شدنLDL در رت مدل دیابتی ـ آتروسکلروزی
Background: Diabetes is the most common metabolic diseases and its vascular complications are main cause of death in diabetic patients. Patients with hyperglycemia, dyslipidemia and oxidative stress are prone to diabetes complications. The goal of this study was investigation of the effect of cysteine (Cys) on hyperglycemia, lipid profile, atherogenic index, glyoxal, methylglyoxal, oxidative st...
متن کاملاثر گلوتامین بر شاخص های استرس اکسیداتیو، التهابی گلیکه و همچنین فعالیت سیستم گلیاوکسیلاز در موش های صحرایی دیابتی- آترواسکلروزی
Background and purpose: Vascular complications of diabetes are the most common causes of mortality in diabetic patients. Hyperglycemia, insulin resistance, dyslipidemia, glycation products, oxidative stress, and inflammation lead to atherosclerosis and diabetic nephropathy in diabetes. This research aimed at studying the effect of glutamine (Gln) on main causes of vascular complications in diab...
متن کاملCorrelation between Glycated Hemoglobin, Serum Glucose and Serum Lipid Levels in Type 2 Diabetes
Abstract Objective: Diabetes mellitus is the most common metabolic disease. One of the most common problems in diabetic patients is atherosclerotic cardiovascular disease which is induced by hyperlipidemia. Impaired lipid metabolism resulting from uncontrolled hyperglycemia has been implicated in cardiovascular complications in diabetic patients. Also, glycated hemoglobin (HbA1c) has been rega...
متن کاملType 2 diabetes: postprandial hyperglycemia and increased cardiovascular risk
Hyperglycemia is a major risk factor for both the microvascular and macrovascular complications in patients with type 2 diabetes. This review summarizes the cardiovascular results of large outcomes trials in diabetes and presents new evidence on the role of hyperglycemia, with particular emphasis on postprandial hyperglycemia, in adverse cardiovascular outcomes in patients with type 2 diabetes....
متن کاملEffect of Linalool on the Activity of Glyoxalase-I and Diverse Glycation Products in Rats with Type 2 Diabetes
Background and purpose: Hyperglycemia contributes to type 2 diabetes and diabetes vascular complications by reduction of the activity of glyoxalase-I (GLO-I) and elevation of glycation, oxidative stress, and inflammatory markers. Linalool is reported to have beneficial effects on glucose metabolism in animal models of diabetes, so, this study aimed at investigating the effect of linalool on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes care
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2005